Introduction to
OpenMP
Programming

U.S. DEPARTMENT OF Ofﬁce of

ENERGY Science

NERSC Staff

~

frreeerer

A
|||‘

Agenda

e Basic information
— An selective introduction to the programming model.
— Directives for work parallelization and synchronization.
— Some hints on usage

* Hands-on Lab
— Writing compiling and executing simple OpenMP
programs.
* Presentation available at
— module load training

— cp SEXAMPLES/NUG/Presentations/
IntroToOpenMP.pptx

Office of
Science

Agenda

e New stuff

— Constructs introduced in OpenMP 3.0
* Not tasking

e Hands-on Lab

Office of

/\\ U.S. DEPARTMENT OF
@ ENERGY science

What is OpenMP?

* OpenMP = Open Multi-Parallelism

* Itis an API to explicitly direct multi-threaded
shared-memory parallelism.

 Comprised of three primary APl components
— Compiler directives
— Run-time library routines
— Environment variables

Office of
Science

Why use OpenMP?

* Moving to the many-core era, we are concerned
with
— Reducing MPlI communications
* May improve run time
— Improving scaling by exploiting
* Fine-grained/Multi-level parallelism (e.g. loop level)
* Parallelism not easily amenable to use of MPI

— Graph algorithms
— Master-slave work queues

— Vectorization
* New directives proposed but still should try to handle this yourself

— Targeting new architectures
* New directives proposed, bit of a wait and see

"
SEE3 U.S. DEPARTMENT OF H A
26N Officeof ‘"1

f» ENERGY Science BERKELEY LAB

NEeF

_How is OpenMP not MPI?

MPI is an API for controlling distributed-memory parallelism on multi-processor
architectures.

Each task has it’s own unique memory

Information is passed between memory locations through the interconnect via the
MPI API.

=

r;‘ U.S. DEPARTMENT OF Office Of
&)

% ENERGY Science E'E'"m::'”ﬁs

OpenMP

A process, such as an MPI task, owns a lot of state information about the process,
including the memory, file handles, etc. Threads, launched by the process, share the

state information, including memory, of the launching process and so are
considered light weight processes.

Since memory references amongst a team of threads are shared: OpenMP requires
that the programmer ensures that memory references are handled correctly.

It is possible, for both paradigms to be used in one application to improve either
speed, or scaling, or both. This is the so called hybrid parallel programming model.

| | | | | |
RN RICH N B N R

% U.S. DEPARTMENT OF Ofﬁce Of

4@ ENERGY science

Fork-and-join model

 OpenMP programs begin as a single process, the
master thread, until they reach a parallel region,
which then spawns a team of threads.

—

master
thread

\222222%"
v

22222272

parallel
region

<
A
rrrrrrr ""l

Office of

7\ U.S. DEPARTMENT OF
@ ENERGY scioncs

Creating parallelism

SR 1—'5\‘\:,_: U.S. DEPARTMENT OF Ofﬁce of rl'/l:‘}‘ i
R 4 EN ERGY Science BERKELEY :u

Parallel regions

* Directives (or sentinels) are comments (in Fortran)
or pragmas (in C/C++). Thus, you can create
portable code that works with or without OpenMP
depending on the architecture or your available
compilers.

— ISOMP directive Fortran
— #pragma omp directive C/C++

* Thread groups are created with the parallel
directive

Office of
Science

Fortran example

double precision :: x(1000)
integer id,n
!Somp parallel private(id)

id = omp get thread num()
n = omp get num threads()
call foo(id, x)

!Somp end parallel

e Outside of parallel region, there is only 1 thread (master).

* Inside of parallel region there are N threads, N set by
OMP_NUM_THREADS env var and aprun.

e All threads share X and call foo(), id is private to each thread.
* There is an implicit barrier at the end of the parallel region

"
SEE3 U.S. DEPARTMENT OF H A
26N Officeof ‘"1

f» ENERGY Science BERKELEY LAB

Fortran example

* In the previous example, we also saw two functions
from the run time library

— omp _get thread num)
e Returns unique thread id number for each thread in the team.

— omp _get num threads()
* Returns the number of threads in the team.
 There are more (over 20) but these are the two
most common, if they are used at all.

Office of :r_rh‘ \'ﬁ|
Science BERKELEY LAB

C example

double x[1000];

#pragma omp parallel

{
int id = omp get thread num();
int n = omp get num threads();
foo(id, x);
}
R U.S. DEPARTMENT OF Office of r/rr:rrr "ﬁ‘

ENERGY Science

ST

&5 2
o =
i)8
e 3
1;,{\:’
NG g

num threads

e Can also set the number of threads to execute a
parallel section

#omp parallel num threads(N)

or

omp_set num threads(N);
#omp parallel

Office of
Science

Optimization Hint: Parallel Regions

* Creating threads
takes time.

— Reduce number of
parallel regions by
either

* Encapsulating
several parallel
regions in a routine
into one

* Hoisting OpenMP
parallel regions to a
higher level

228, U.S. DEPARTMENT OF Office of

ENERGY Science

£

G

Microseconds

1000

100

[ERY
o

0.1

=>=PGl| Intel =#=Cray =**gnu

30

Threads

>
A
rrrrrrr ""‘

BERKELEY LAB

Synchronization

* Synchronization is used to impose order constraints
and to protect shared data.
— Master
— Single
— Critical
— Barrier

Office of :r_\r‘ \'ﬁ|
Science BERKELEY LAB

master directive

!Somp parallel private(id)
id = omp get thread num()

!Somp master
print *, ‘myid = ‘, id
!Somp end master

!Somp end parallel

* In this example, all threads are assigned a thread ID number
(0-23, say).

 Because of the master directive, only the master thread
(id=0) prints out a message.

* No implied barrier at end of the master region

-
U.S. DEPARTMENT OF H A
Office of r:rh‘ i

ENERGY Science BERKELEY LAB

)"hmm“‘\‘

single directive

!Somp parallel private(id)
id = omp get thread num()

!Somp single
print *, ‘myid = ‘, id
!Somp end single [nowait]

!Somp end parallel

* Again, all threads are assigned a thread ID number.

* Because of the single directive, only one thread prints out a
message.

* Which thread executes the single section may change from
one execution to the next.

* Implied barrier at end of single region => all threads wait!
* The optional nowait clause overrides the implicit barrier.

"
U.S. DEPARTMENT OF H A
Officeof ‘"1

ENERGY Science

)"hmm“‘\“

BERKELEY LAB

critical directive

!Somp parallel private(id)
id = omp get thread num()

!Somp critical
print *, ‘myid = ‘, id
!Somp end critical

!Somp end parallel

* All threads will print their id number.

 Withinthe critical section, only one thread out of the
team will be executing at any time.

* Thus, for six threads, there will be six print statements but
they will not necessarily be ordered by id number.

-
. AY
U.S. DEPARTMENT OF Office of rTr_r}‘ ""l

E N E RGY Science BERKELEY LAB

ST
! ;
e @ 4
A 5
2 5
SO

barrier directive

!Somp parallel
call fool()

!Somp barrier
call foo2()

!Somp end parallel

* The barrier directive requires that all threads in the team
arrive at the barrier before execution continues.

* In this example, the function fool may perform some action, e.g.
on shared data, that may affect other threads in the function
foo2. Thus, all threads execute fool, stop at the barrier and then
continue on to foo2.

& "6:1,* U.S. DEPARTMENT OF Ofﬂce Of

7") ENERGY Science

N
A
rrrrrrr "“l

BERKELEY LAB

atomic directive

* The atomic protects memory locations from
being updated by more than one thread.

n =20
!Somp parallel

!Somp atomic
n=n-+1

!Somp end parallel

OpenMP 3 implements several new atomic
clauses, specifically: read, write, update,
capture

Office of :r_rh‘ \'ﬁ|
Science BERKELEY LAB

Optimization Hint: Barriers

* In general, try to avoid
the use of sync/barrier
directives, as they may
cause significant
performance
degradation.

* If possible, try to re-
factor your algorithm to / ~=BARRIER
avoid using them. a SINGLE
Consider using o 8
temporary variables in 0 10 20
to accomplish this. Threads

N
8

X
!

Microseconds
[HRY
U
a

o

o
o
N

Office of :r_rh‘ \'ﬁ|
Science BERKELEY LAB

Data sharing

DEPARTMENT OF Office of

SOR 1—'5\‘\:,_" u.s.
3 (17) ENERGY Science

Private/Shared Data

* In parallel regions, several types of data attributes can exist

— shared (default)
* Accessible by all threads
— private
* Accessible only by the current thread
* NB: Loop counters are automatically private

* Also
— None
— firstprivate/lastprivate/threadprivate

* The default can be changed using the default directive

!Somp parallel default(private)
!Somp parallel default(shared)
!Sompe parallel default(none)

-
. AY
U.S. DEPARTMENT OF Office of ri}r‘ ""l

E N E RGY Science BERKELEY LAB

ey
g &
i @ ;
7 g
2 /7
2 4
S i

Private/Shared data

* Individual variables in parallel regions can be declared private or
shared

!Somp parallel private(x0,y0)
x0 = xarray(..)
y0 = yarray(...)
f(..) = fool(x0,y0)

!Somp end parallel

* Here, x0, and yO are private variables, taken from the shared arrays
xarray (), and yarray () that are used to compute some variable
that is stored in the shared array £ ().

* Iltis also possible to directly specify that variables be shared.

!Somp parallel private(x0,y0) shared(xarray,yarray,f)
x0 = xarray(...)
y0 = yarray(...)
f(..) = fool(x0,y0)

!Somp end parallel

N
A
rrrrrrr "“l

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science BERKELEY LAB

)"hmm“‘\‘

firstprivate

* The firstprivate directive allows you to set private
variables to the master thread value upon entry into the
parallel region.

A =1
B = 2
!Somp parallel private(A) firstprivate(B)

!Somp end parallel

* In this example, A has an undefined value on entry into the

parallel region while B has the value specified in the previous
serial region.

* This can be costly for large data structures.

"
U.S. DEPARTMENT OF H A
Officeof ‘"1

ENERGY Science

T
CERD
N
R &
s

BERKELEY LAB

lastprivate

* Specifies that the variable in the serial section of the code is set
equal to the private version of whichever thread executes the
final iteration(for/do loop) or last section (sections).

A =1
B = 2
!Somp parallel firstprivate(B)
!Somp do lastprivate(A)
do i =1, 1000
A =1
end do
!Somp end do
!Somp end parallel

* In this example, upon exiting the do loop, A=1000.

-
R U.S. DEPARTMENT OF ; A
A Officeof ‘"1

7‘) ENERGY Science

BERKELEY LAB

threadprivate

* Makes a private version of a global variable or
common block for each thread.

— OQOutside of parallel regions, master thread version is
referenced

— Each thread gets its own copy so threads don’t interfere
with each other

— Assume values are undefined unless a copyin clause is
specified on parallel directive

— Persist through multiple parallel regions, subject to
restrictions

Office of
Science

threadprivate example

int a;
float x;

#pragma omp threadprivate(a, Xx)
main() {
#pragma omp parallel copyin(a,x)

{

Iy

PRENTQ
P e
)
%

S

=
- A
rrrrrrr ‘""

U.S. DEPARTMENT OF Ofﬁce of

& ENERGY sconce

Optimization Hint: Scoping

e If a function is called from a parallel region, local
variables declared in that function are
automatically private to the calling thread.

— Life might be easier if you moved your parallel region to a
higher level.
* Thread persistence, even if you don’t use them
» Software engineering is easier:

— no need to declare private variables (very easy to get wrong
and debug if you have a lot)

Office of :r_rh‘ \'ﬁ|
Science BERKELEY LAB

Loop Worksharing
(do/for)

Office of

‘_/,.‘;i"“\"""f\‘\j_= U.S. DEPARTMENT OF
N EN ERG Science

* The OpenMP worksharing construct do (in Fortran) or for (in C/C++)
enables the programmer to distribute the work of loops across threads.

!Somp parallel
!Somp do
DO I =1, N

a(i) = b(i) + c(i)
END DO
!Somp end do [nowait]
!Somp end parallel

* In this example, OpenMP determines, by default, the amount of work to
give to each thread by dividing N by the number of threads. We will see

later how to change this behavior.
* Implicit thread synchronization point at end of DO section. Can change
this with the nowait clause.

N
A
rrrrrrr "“l

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science BERKELEY LAB

o
LW
S/ \E
B 2
% @ %
NS

Loop worksharing

* For convenience, the two statements can be combined

!Somp parallel do
DO I =1, N
a(i) = b(i) + c(i)
END DO
!Somp end parallel do

-~
=B, U.S. DEPARTMENT OF : A
Officeof ‘m|

& ENERGY sconce

Reductions

* Very often, a programmer needs to compute a
variable that is the sum of other data, e.g.

Real :: x(N), avg

Avg = 0.0

DO I =1, N
= avg + x(1i)

Avg = avg / FLOAT(N)

* This operation is called a reduction and there is
support in OpenMP for parallelizing this sort of

thing rather trivially.

Office of ,f:,}| ‘.ﬁl
Science BERKELEY LAB

reduction directive

real :: x(N), avg
!Somp parallel do reduction(+:avg)
DO I =1, N
avg = avg + x(1)
END DO
!Somp end parallel do

* In this example, the avg variable is automatically declared
private and initialized to zero.

* The general form of the reduction directive is

reduction(operator:variable)

-
. AY
U.S. DEPARTMENT OF Office of rTr_r}‘ ""l

E N E RGY Science BERKELEY LAB

T
g &
: @ ;
g 3
A 5
2 4
S i

Reductions

* Some of the most common reduction operators and initial values are as

follows
Fortran Only
Operator Initial value .
Operator Initial value
+ 0
* 1 MIN Largest pos. number
' 0 MAX Most negative
number
C/C++ Only
— AND. .TRUE.
Operator Initial value
.OR. .FALSE.
& ~0
| 0 .NEQV. .FALSE.
.IEOR. 0
A 0
.IOR. 0
&& 1)
T JAND. All bits on
0
.EQV. .TRUE.
P U.S. DEPARTMENT OF Ofﬂce Of rrr:rrr ‘ml

N
¢ @)

)

ENERGY Science WE&B

Q2
SO

ordered directive

* Some expressions in do/for loops need to be executed
sequentially because the results are order dependent, e.g.

DO I =1, N
a(i) = 2
END DO

* a(i-1)

* In order to parallelize this loop, it is mandatory to use the
ordered directive

1$omp do ordered <—— LetOpenMP know an ordered
DO I =1, N statement is coming later
!Somp ordered

a(i) = 2 * a(i-1)
!Somp end ordered
END DO
!Somp end do

-
U.S. DEPARTMENT OF H A
Office of r:rh‘ i

ENERGY Science BERKELEY LAB

)"hmm“‘\“

ordered restrictions

e Can only be used in a do/for loop

— If you have an ordered directive, you have to have an
ordered clause on the do loop

* Only one thread at a time in an ordered section

lllegal to branch into/out of it
* Only one ordered section in a loop

Office of
Science

Scheduling

* When a do-loop is parallelized and its iterations
distributed over the different threads, the most
simple way of doing this is by giving to each thread
the same number of iterations.

— not always the best choice, since the computational cost
of the iterations may not be equal for all of them.

— different ways of distributing the iterations exist, this is
called scheduling.

Office of
Science

schedule directive

* The schedule directive allows you to specify the
chunking method for parallelization of do or
parallel do loops. Work is assighed to threads
in a different manner depending on the scheduling
type or chunk size used.

— static (default)
— dynamic

— guided

— runtime

Office of
Science

schedule directive

!Somp parallel do schedule(type[, chunk])
DO I =1, N
a(i) = b(i) + c(i)
END DO
!Somp end parallel do

* The schedule clause accepts two parameters.

— The first one, type, specifies the way in which the work is
distributed over the threads.

— The second one,chunk, is an optional parameter
specifying the size of the work given to each thread: its
precise meaning depends on the type of scheduling used.

Office of
Science

schedule directive

— static (default)

* work is distributed in equal sized blocks. If the chunk size is
specified, that is the unit of work and blocks are assigned to
threads in a round-robin fashion.

— dynamic

e work is assigned to threads one at a time. If the chunk size is not

specified, the chunk size is one.

* Faster threads get more work, slower threads less.

~
U.S. DEPARTMENT OF H A
Officeof ‘"1

E N E RGY Science BERKELEY LAB

ST,
£l \&)
()
% /5
2 5
S

Sections

DEPARTMENT OF Office of

le‘f\;, u.s.
ENERGY Science

schedule directive

— guided
e Similar to dynamic but each block of work is a fixed fraction of the
preceding amount, decreasing to chunk size (1, if not set)

* Fewer chunks = less synchronization = faster?

— runtime
* Allows scheduling to be determined at run time.

* Method and chunk size specified by the environment variable
OMP SCHEDULE, e.g.

— setenv OMP SCHEDULE “guided, 25"

~
U.S. DEPARTMENT OF H A
Officeof ‘"1

E N E RGY Science BERKELEY LAB

ENToN
3‘\»‘ 'JIG:‘/
3 %)
4)
g 3
A 5
), @ 4
S i

Sections

* Sections are a means of distributing independent
blocks of work to different threads.

* For example, you may have three functions that do
not update any common data

call fool(..)
call foo2(..)
call foo3(..)

Office of
Science

N
A
rrrrrrr "“l

BERKELEY LAB

Section directive

* Using sections, each of these functions can be
executed by different threads

!Somp parallel
!Somp sections [options]
!Somp section

call fool(..) !thread 1
!Somp section
call foo2(..) !thread 2
!Somp section
call foo3(..) !thread 3

!Somp end sections[nowait]
!Somp end parallel

Office of
Science

Sections

 May be the only way to parallelize a region.
* If you don’t have enough sections, some threads my
be idle.

— Still may be useful and provide a performance boost if you
can’t thread your blocks or functions.

* Canalsouse ! Somp parallel sections
shortcut.

Office of
Science

Workshare

U.S. DEPARTMENT OF Office of ”/r—:>| A
W ENERGY science EY LM

Workshare (Fortran only)

* In Fortran, the following can be parallelized using
the workshare directive
— forall
— where

— Array notation expression
* eg.A = B + C,whereA, B,and C are arrays.

— Transformational array functions

* eg.matmul, dot product, sum, maxval, minval, etc.

Office of
Science

workshare example

real(8) :: a(1000), b(1000)
!Somp parallel
!Somp workshare

A(:) = a(:) + b(:)

!Somp end workshare[nowait]
!Somp end parallel

Each thread gets a chunk of the iteration space of the
arrays.

~
U.S. DEPARTMENT OF H A
Officeof ‘"1

ENERGY Science WE&B

RENTOr S
CERD
1S e)
A (7])i
), &
S5 i

Useful links

 OpenMP Consortium (www.openmp.org)

— http://www.openmp.org/mp-documents/OpenMP3.0-
FortranCard.pdf

— http://openmp.org/mp-documents/OpenMP3.1-CCard.pdf

Office of
Science

Lab 1

* You can use your personal or course account
* ssh to hopper/edison
* module load training

 Copy homework problems from
— SEXAMPLES/NUG/OpenMP/openmp_lab.tar

* Load your compiler if necessary

* Edit ENV file to pick C or Fortran compiler and OpenMP
flag

* Each exercise has a build and run script

— Jrunit N
* N =number of threads.
* Script compiles code, creates a batch script, and launches a batch job.

"
U.S. DEPARTMENT OF H A
Officeof ‘"1

ENERGY Science &;;;i\l%a

T

£ W

B 2
RS

Lab 1

* Exercise 1: Parallel loop with reduction.
— Program integrates a function to determine pi.
— Parallelize the loop and use a reduction.
— Determine speedup for several thread counts.

* Exercise 2: Worksharing and sections
— Use worksharing to parallelize array constructs
— Use Sections to parallelize functional calls
— Determine speedup for several thread counts.

Office of :r_r}‘ \'ﬁ|
Science BERKELEY LAB

Lab 1

* Exercise 3: Simple matrix-matrix multiply.
— Parallelize the initializations using sections.
— Parallelize the multiply
— Introduces use of omp_get _thread num()

* Must reside in the Somp parallel section

— Determine speedup for various thread counts.

Office of
Science

OpenMP 3.0 features

e OMP_STACKSIZE
* Loop collapsing
* Nested parallelism

Office of
Science

OMP_STACKSIZE

omp stacksize size

Environment variable that controls the stack size
for threads.

— Valid sizes are size, sizeB, sizeK, sizeM, sizeG bytes.

— If B, K, M, G not specified, size is in kilobytes(K).

Office of :r_\r‘ \'ﬁ|
Science BERKELEY LAB

Collapse(n)

* Clause for do/for constructs

* Specifies how many loops in a nested loop should
be collapsed into one large iteration space.

!Somp parallel do collapse(2)
DO K = 1, N1
DO J = 1, N2
DO I = 1, N3
a(iljlk) = b(iljlk) + CO(C(iljlk)
END DO
END DO
END DO
!Somp end parallel do

NB: Collapsing down to the innermost loop might inhibit compiler
optimizations.

Office of
Science

Nested Parallelism

e |tis possible to nest parallel sections within other
parallel sections

!Somp parallel
print *, ‘hello’
!Somp parallel
print *, ‘hi’
!Somp end parallel
!Somp end parallel

e Can be useful, say, if individual loops have small counts
which would make them inefficient to process in
parallel.

Office of
Science

Nested parallelism

* Nested parallelism needs to be enabled by either

— Setting an environment variable
« setenv OMP_ NESTED TRUE
* export OMP NESTED=TRUE

— Using the OpenMP run-time library function
* call omp set nested(.true.)

* Can query to see if nesting is enabled
— omp_get nested()

* Set/Get Number of maximum active levels

— omp_set_max_active_levels (int max_levels)
— OMP_MAX_ACTIVE_LEVELS=N

Office of
Science

Nested Parallelism

* Warnings
— Remember overhead from creating parallel regions.
— Easy to oversubscribe a node if you don’t pay attention.
— May cause load imbalance

n
Lxad,. U.S. DEPARTMENT OF A
i 3 Office of ,:\,‘ i

& ENERGY Science SRR

Caveat Emptor

e Section 1.1 of OpenMP spec

— OpenMP-compliant implementations are not required to

check for data dependencies, data conflicts, race
conditions, or deadlocks, any of which may occur in
conforming programes.

— ... compliant implementations are not required to check for
code sequences that cause a program to be classified as
non-conforming.

— The user is responsible for using OpenMP in his application
to produce a conforming program.

Office of
Science

Caveat Emptor

* Be careful of the use of ‘orphaned’ directives.

— Good example
 Parallel region in fool() that calls foo2() that has an OpenMP for/

do construct.

— Bad example
* Parallel ordered do loop with an ordered section that calls another

function that has an orphaned ordered directive.

* Violates having more than one ordered section in a loop but
compiler doesn’t see it and so the behavior is ‘undefined’.

..‘ 2 U.S. DEPARTMENT OF
‘ 3 Officeof ‘m|
BERKELEY LAB

1 ENERGY Science

Exercises left to the reader:

 Environment variables: 9
* Run time functions: 32 (incl locks!)
* Tasks!
* Optimization
— Thread affinity
— Memory: NUMA effects/false sharing

e Hazards
— Race conditions
— Dead/Live locking

* OpenMP 4

— Processor binding
— SIMD directives (loops, function declarations)

Office of
Science

Lab 2

* Exercise 4: Collapse directive

— Parallelize the two loops structures. Get some timings for
various thread counts.

— Insert collapse(2) directive for both loops. Note effect for
different thread counts.

Office of :r_\r‘ \'ﬁ|
Science BERKELEY LAB

